
0

1

Authors

This presentation was prepared by:

Craig S. Mullins

Corporate Technologist

NEON Enterprise Software, Inc.
14100 Southwest Freeway, Suite 400
Sugar Land, TX 77478
Tel: 281.491.6366
Fax: 281.207.4973
E-mail: craig.mullins@neonesoft.com

This document is protected under the copyright laws of the United States and other countries as an unpublished work. This
document contains information that is proprietary and confidential to NEON Enterprise Software, which shall not be disclosed
outside or duplicated, used, or disclosed in whole or in part for any purpose other than to evaluate NEON Enterprise Software
products. Any use or disclosure in whole or in part of this information without the express written permission of NEON Enterprise
Software is prohibited. © 2006 NEON Enterprise Software (Unpublished). All rights reserved.

2

Agenda

This presentation highlights the DB2 9 for z/OS enhancements that

directly impact DB2 application developers. Examples of areas this

presentation will cover include:

New data types and functions

New SQL statements like INTERSECT, EXCEPT, MERGE, and

TRUNCATE

The ability to SELECT FROM and UPDATE, DELETE, or MERGE

statement

Improvements to existing SQL

A (very) brief overview of DB2 9 XML capability

And more…

3

DB2 9 for z/OS

General Availability: March 2007

DB2 9 – where’s the “V”?

V8 was large… sometimes painful

DB2 9 nowhere near as intimidating

But it offers some nice new development
“things” and “stuff”

4

Multi-row INSERT, FETCH & multi-row cursor UPDATE, Dynamic Scrollable Cursors, GET
DIAGNOSTICS, Enhanced UNICODE for SQL, join across encoding schemes, IS NOT DISTINCT
FROM, Session variables, range partitioning

Inner and Outer Joins, Table Expressions, Subqueries, GROUP BY, Complex Correlation, Global
Temporary Tables, CASE, 100+ Built-in Functions including SQL/XML, Limited Fetch, Insensitive Scroll
Cursors, UNION Everywhere, MIN/MAX Single Index Support, Self Referencing Updates with
Subqueries, Sort Avoidance for ORDER BY, and Row Expressions, 2M Statement Length, GROUP BY
Expression, Sequences, Scalar Fullselect, Materialized Query Tables, Common Table Expressions,
Recursive SQL, CURRENT PACKAGE PATH, VOLATILE Tables, Star Join Sparse Index, Qualified
Column names, Multiple DISTINCT clauses, ON COMMIT DROP, Transparent ROWID Column, Call
from trigger, statement isolation, FOR READ ONLY KEEP UPDATE LOCKS, SET CURRENT SCHEMA,
Client special registers, long SQL object names, SELECT from INSERT

Updateable UNION in Views, ORDER BY/FETCH FIRST in subselects & table expressions, GROUPING
SETS, ROLLUP, CUBE, INSTEAD OF TRIGGER, EXCEPT, INTERSECT, 16 Built-in Functions,
MERGE, Native SQL Procedure Language, SET CURRENT ISOLATION, BIGINT data type, file
reference variables, SELECT FROM UPDATE or DELETE, multi-site join, MDC

z

L
U
W

c
o
m
m
o
n

SQL Compatibility: DB2 z V8 / DB2 LUW V8.2

5

Multi-row INSERT, FETCH & multi-row cursor UPDATE, Dynamic Scrollable Cursors, GET
DIAGNOSTICS, Enhanced UNICODE for SQL, join across encoding schemes, IS NOT DISTINCT
FROM, Session variables, TRUNCATE, DECIMAL FLOAT, VARBINARY, optimistic locking,
FETCH CONTINUE, ROLE, MERGE, SELECT from MERGE

Inner and Outer Joins, Table Expressions, Subqueries, GROUP BY, Complex Correlation, Global
Temporary Tables, CASE, 100+ Built-in Functions including SQL/XML, Limited Fetch, Insensitive Scroll
Cursors, UNION Everywhere, MIN/MAX Single Index Support, Self Referencing Updates with Subqueries,
Sort Avoidance for ORDER BY, and Row Expressions, 2M Statement Length, GROUP BY Expression,
Sequences, Scalar Fullselect, Materialized Query Tables, Common Table Expressions, Recursive SQL,
CURRENT PACKAGE PATH, VOLATILE Tables, Star Join Sparse Index, Qualified Column names,
Multiple DISTINCT clauses, ON COMMIT DROP, Transparent ROWID Column, Call from trigger,
statement isolation, FOR READ ONLY KEEP UPDATE LOCKS, SET CURRENT SCHEMA, Client special
registers, long SQL object names, SELECT from INSERT, UPDATE or DELETE, INSTEAD OF
TRIGGER, Native SQL Procedure Language, BIGINT, file reference variables, XML, FETCH FIRST &
ORDER BY in subselect and fullselect, caseless comparisons, INTERSECT, EXCEPT, not logged
tables, OmniFind, Spatial, range partitioning, compression

Updateable UNION in Views, GROUPING SETS, ROLLUP, CUBE, 16 Built-in Functions, SET
CURRENT ISOLATION, multi-site join, MERGE, MDC, XQuery

z

L
U
W

c
o
m
m
o
n

SQL Compatibility: DB2 9 – z vs. LUW

6

Multi-row INSERT, FETCH & multi-row cursor UPDATE, Dynamic Scrollable Cursors, GET
DIAGNOSTICS, Enhanced UNICODE for SQL, join across encoding schemes, IS NOT
DISTINCT FROM, TRUNCATE, VARBINARY, FETCH CONTINUE, MERGE, SELECT from
MERGE, index compression

Inner and Outer Joins, Table Expressions, Subqueries, GROUP BY, Complex Correlation,
Global Temporary Tables, CASE, 100+ Built-in Functions including SQL/XML, Limited Fetch,
Insensitive Scroll Cursors, UNION Everywhere, MIN/MAX Single Index, Self Referencing
Updates with Subqueries, Sort Avoidance for ORDER BY, and Row Expressions, 2M
Statement Length, GROUP BY Expression, Sequences, Scalar Fullselect, Materialized
Query Tables, Common Table Expressions, Recursive SQL, CURRENT PACKAGE PATH,
VOLATILE Tables, Star Join Sparse Index, Qualified Column names, Multiple DISTINCT
clauses, ON COMMIT DROP, Transparent ROWID Column, Call from trigger, statement
isolation, FOR READ ONLY KEEP UPDATE LOCKS, SET CURRENT SCHEMA, Client
special registers, long SQL object names, SELECT from INSERT, UPDATE or DELETE,
INSTEAD OF TRIGGER, Native SQL Procedure Language, BIGINT, file reference variables,
XML, FETCH FIRST & ORDER BY in subselect & fullselect, caseless comparisons,
INTERSECT, EXCEPT, not logged tables, OmniFind, spatial, range partitions, data
compression, session variables, DECIMAL FLOAT, optimistic locking, ROLE

Updateable UNION in Views, GROUPING SETS, ROLLUP, CUBE, more Built-in
Functions, SET CURRENT ISOLATION, multi-site join, MERGE, MDC, XQuery, XML
enhancements, array data type, global variables, Oracle syntax

z

l
u
w

c
o
m
m
o
n

SQL Compatibility: DB2 9 – z vs. DB2 9.5 LUW

7

DB2 9 New SQL Stuff

MERGE

TRUNCATE

SELECT FROM
UPDATE, DELETE, MERGE

INTERSECT

EXCEPT

INSTEAD OF TRIGGER

Native SQL Procedure Language

REOPT Enhancements

Histogram statistics

PLAN Management

LOB Improvements

FETCH FIRST and ORDER BY in
subselect and fullselect

Index on expressions

New built-in functions

Skip Locked Data

Optimistic Locking

New Data Types

XML

8

New SQL Statement: MERGE

Have you ever had a program requirement to
accept input, either from a file or online, and
take the following action(s):

If the data is not in the database, INSERT it

If the data is in the database, UPDATE the existing
row with any new values provided

A common requirement is to present data using a
spreadsheet metaphor, where rows can be
inserted or modified on the screen.

9

MERGE

MERGE combines UPDATE and INSERT into a

single SQL statement

When source row matches target, the target row is
updated

When source row does not match, the source row is
inserted into the target

10

MERGE Syntax

MERGE INTO table_name

USING table_name

ON (condition)

WHEN MATCHED THEN

UPDATE SET column1 = value1 [, column2 = value2 ...]

WHEN NOT MATCHED

THEN INSERT column1 [, column2 ...] VALUES (value1 [,
value2 ...]) ;

11

MERGE Example

MERGE INTO CUST C

USING VALUES

((:CUSTNO, :CUSTNAME, :CUSTDESC)

FOR :HV_NROWS ROWS) AS NEW (CUSTNO, NAME, DESC)

ON (C.CUSTNO = NEW.CUSTNO)

WHEN MATCHED THEN UPDATE

SET (C.NAME, C.DESC) = (NEW.NAME, NEW.DESC)

WHEN NOT MATCHED THEN INSERT (CUSTNO, NAME, DESC)

VALUES (NEW.CUSTNO, NEW.NAME, NEW.DESC)

NOT ATOMIC CONTINUE ON SQL EXCEPTION;

Target Table

Source Table

12

What Happens if we MERGE?

CEOStacy52

ForemanBill40

BossGeorge35

AdminSally20

ClerkJoe10

DescNameNo

CEOStacey52

DriverVincent30

ManagerSally20

DescNameNo

Target Table

Source Table

13

MERGE Results

CEOStacey52

ForemanBill40

BossGeorge35

DriverVincent30

ManagerSally20

ClerkJoe10

DescNameNo

Target Table

New Row

Edited Row

Edited Row

14

New SQL Statement: TRUNCATE

The TRUNCATE statement is simply a quick way

to DELETE all of the data from a table.

The table can be in any type of table space and it can
be either a base table or a declared global temporary
table.

If the table contains LOB or XML columns, the
corresponding table spaces and indexes are also
truncated.

DELETE triggers will not be fired.

15

TRUNCATE Example

TRUNCATE TABLE EXAMPLE_TABLE

REUSE STORAGE

IGNORE DELETE TRIGGERS

IMMEDIATE;

REUSE STORAGE tells DB2 to empty allocated storage
but keep it allocated. The alternate (default) is DROP
STORAGE, which tells DB2 to release the storage that
is allocated and to make it available for use (for that table
or any other table in the table space).

IGNORE DELETE TRIGGERS tells DB2 to not fire any
DELETE triggers. Alternately, you can specify RESTRICT
WHEN DELETE TRIGGERS, which will return an error
if there are any delete triggers defined on the table.

The IMMEDIATE option causes the TRUNCATE to be
immediately executed and it cannot be undone. If
IMMEDIATE is not specified you can issue a ROLLBACK
to undo the TRUNCATE.

16

TRUNCATE Considerations

TRUNCATE can delete all data without actually

processing each physical page as long as the table

is in a segmented table space or a universal table

space… unless…

TRUNCATE will have to process each data page if:

Table is in a simple table space

Table is in a partitioned table space

Table has CDC enabled, uses MLS, or VALIDPROC

17

New SQL: SELECT FROM DELETE, UPDATE, MERGE

What if you need to read automatically generated data? For
example:

default values (especially dates, times, and user-defined defaults)

IDENTITY columns

In some cases, it is possible to perform actions on an inserted row
before it gets saved to disk. For example, a BEFORE TRIGGER
might change data before it is even recorded to disk.

But the application program will not have any knowledge of this
change that is made in the trigger.

What if the program needs to know the final column values?
Previously, this was difficult and inefficient to implement.

18

First, a V8 Refresher: SELECT FROM INSERT

SELECT FROM INSERT, introduced in DB2 V8 allows you to both
insert the row and retrieve the values of the columns with a
single SQL statement. It performs very well because it performs
both the INSERT and the SELECT as a single operation.

Consider the following example:

SELECT COL5 INTO :C5-HV
FROM FINAL TABLE
(INSERT (COL1, COL2, COL5, COL7) INTO SAMPLE_TABLE
VALUES('JONES', 'CHARLES', CURRENT DATE, 'HOURLY')
);

19

V9 Adds DELETE, UPDATE, and MERGE Support

DB2 V9 allows the FROM clause of a SELECT

statement† to contain a searched UPDATE, a

searched DELETE, or a MERGE statement.

This allows the user, or a program, to know

which values were updated or deleted.

† a SELECT statement that is a subselect; or in a SELECT INTO statement

20

An Example: SELECT FROM UPDATE

SELECT SUM(SALARY) INTO :SAL-HV
FROM FINAL_TABLE
(UPDATE EMP
SET SALARY = SALARY * 1.02
WHERE WORKDEPT = 'A01');

Prior to the capability you would have had to run the UPDATE
statement, and then only after it finishes, you would run the
SELECT to add up the new salary values.

Now, instead of multiple statements requiring multiple passes
through the data, you can consolidate it into one.

21

INCLUDE: SELECT FROM MERGE

And because you might want to know which rows

were updated and which were inserted, you can

INCLUDE a special column on MERGE:

SELECT CUSTNO, STATUS FROM FINAL TABLE

(MERGE INTO CUST C INCLUDE (STATUS CHAR(3))

USING VALUES ((:CUSTNO, :CUSTNAME, :CUSTDESC) FOR :HV_NROWS ROWS)
AS NEW (CUSTNO, NAME, DESC)

ON (C.CUSTNO = NEW.CUSTNO)

WHEN MATCHED THEN

UPDATE SET (C.NAME = NEW.NAME, C.DESC = NEW.DESC, STATUS = 'UPD')

WHEN NOT MATCHED THEN

INSERT (CUSTNO, NAME, DESC) VALUES (NEW.CUSTNO, NEW.NAME, NEW.DESC, 'INS')

NOT ATOMIC CONTINUE ON SQL EXCEPTION;

22

Set Operations: INTERSECT, EXCEPT, and UNION

INTERSECT is used to match result sets between two tables. If the
data is the same in both results sets it passes through. When
INTERSECT ALL is specified, the result consists of all rows that are
in both result sets. If INTERSECT is specified without the ALL option,
the duplicates will be removed from the results.

EXCEPT, on the other hand, combines non-matching rows from two
result tables. Some other DBMS implementations refer to this as the
MINUS operation. When EXCEPT ALL is specified, the result consists
of all rows from the first result table that do not have a corresponding
row in the second and any duplicate rows are kept. If EXCEPT is
specified without the ALL option, duplicates are eliminated.

Both of these new set operations work similarly to UNION, which has
existed since the beginning days of DB2. UNION gives all rows in both
tables regardless of which they originated from. UNION ALL keeps
duplicates whereas UNION removes duplicates.

23

INTERSECT Example

For example, the following SQL will show all customers in

the USA who are also employees (with no duplicates):

SELECT last_name, first_name, cust_num

FROM CUST

WHERE country = 'USA'

INTERSECT

SELECT last_name, first_name, emp_num

FROM EMP

WHERE country = 'USA';

24

EXCEPT Example

The following SQL will return only those items

sold in March that were not also sold in April:

SELECT item FROM MARCH_SALES

EXCEPT

SELECT item FROM APRIL_SALES;

25

INTERSECT and EXCEPT Considerations

The SELECT-lists must be UNION compatible. That is, they

must have the same number of columns and the data type

and length for each respective column must be

compatible.

Cannot be used with CLOB, BLOB, DBCLOB, or XML data

types.

More on SQL set operations Wikipedia at:

http://en.wikipedia.org/wiki/Union_(SQL)

26

New Type of Trigger: INSTEAD OF

INSTEAD OF triggers can only be defined on VIEWs.

INSTEAD OF triggers enable views that would not otherwise

be updatable to support updates.

Typically, a view that consists of multiple base tables

cannot be updated.

With an INSTEAD OF trigger you can code logic to direct

inserts, updates and deletes to the appropriate underlying

tables that comprise the view.

27

INSTEAD OF Trigger Example (The View)

Let’s take a look at an example to better understand the
INSTEAD OF trigger. First, we create a view that joins the
EMP and DEPT tables:

CREATE VIEW EMP_DEPT
(EMPNO, FIRSTNME, MIDINIT, LASTNAME, PHONENO,
HIREDATE, DEPTNAME) AS

SELECT EMPNO, FIRSTNME, MIDINIT, LASTNAME, PHONENO,
HIREDATE, DEPTNAME
FROM EMP, DEPT

WHERE EMP.WORKDEPT = DEPT.DEPTNO;

28

INSTEAD OF Trigger Example (Triggers #1)

Since this view is a join, it is not updateable. We can now

remedy this by coding up some INSTEAD OF triggers. First,

we’ll take care of INSERTs:

CREATE TRIGGER E_D_ISRT INSTEAD OF INSERT ON EMP_DEPT
REFERENCING NEW AS NEWEMP FOR EACH ROW
INSERT INTO EMPLOYEE (EMPNO, FIRSTNME, MIDINIT, LASTNAME,

WORKDEPT, PHONENO, HIREDATE)
VALUES(EMPNO, FIRSTNME, MIDINIT, LASTNAME,

COALESCE((SELECT DEPTNO FROM DEPT AS D
WHERE D.DEPTNAME = NEWEMP.DEPTNAME),

RAISE_ERROR('70001', 'Unknown dept name')),
PHONENO, HIREDATE);

An insert
against the
view would not
be inserting a
new
department, so
we will be
inserting data
into the EMP
table. If the
department
does not exist,
we’ll raise an
error.

29

INSTEAD OF Trigger Example (Triggers #2)

Next we’ll consider updates:

CREATE TRIGGER E_D_UPD INSTEAD OF UPDATE ON EMP_DEPT
REFERENCING NEW AS NEWEMP OLD AS OLDEMP

FOR EACH ROW
BEGIN ATOMIC
VALUES(CASE WHEN NEWEMP.EMPNO = OLDEMP.EMPNO THEN 0

ELSE RAISE_ERROR('70002', 'Must not change EMPNO') END);
UPDATE EMP AS E

SET (FIRSTNME, MIDINIT, LASTNAME, WORKDEPT, PHONENO, HIREDATE)
= (NEWEMP.FIRSTNME, NEWEMP.MIDINIT, NEWEMP.LASTNAME,

COALESCE((SELECT DEPTNO FROM DEPT AS D
WHERE D.DEPTNAME = NEWEMP.DEPTNAME),
RAISE_ERROR ('70001', 'Unknown dept name')),

NEWEMP.PHONENO, NEWEMP.HIREDATE)
WHERE NEWEMP.EMPNO = E.EMPNO;END

An update
against the
view would be
updating
employee info,
so we will be
updating data
in the EMP
table. If the
department
does not exist,
we’ll raise an
error.

30

INSTEAD OF Trigger Example (Triggers #3)

Finally we take care of deletions:

CREATE TRIGGER E_D_DEL INSTEAD OF DELETE ON EMP_DEPT

REFERENCING OLD AS OLDEMP FOR EACH ROW

DELETE FROM EMP AS E WHERE E.EMPNO = OLDEMP.EMPNO;

Again, deleting from
this view would impact
employee data, not
department data, so we
will code the trigger to
delete the appropriate
rows from the EMP
table.

31

INSTEAD OF Trigger Considerations - 1

The view must exist at the current server and none of the following are
permitted for a view to have an INSTEAD OF trigger:

the WITH CASCADED CHECK option

a view on which a symmetric view has been defined

a view that references data encoded with different encoding schemes or

CCSID values

a view with a ROWID, LOB, or XML column (or a distinct type that is defined

as one of these types)

a view with a column based on an underlying column defined as an identity

column, security label column, or a row change timestamp column

a view with a column that is defined (directly or indirectly) as an expression

a view with a column that is based on a column of a result table that

involves a set operator

a view with any columns that have field procedures

a view where all of the underlying base tables are DB2 Catalog tables or

created global temporary tables

a view that has other views dependent on it

32

INSTEAD OF Trigger Considerations - 2

Using an INSTEAD OF trigger, each requested modification
operation made against the view is replaced by the trigger logic.
The trigger performs the insert, update, or delete on behalf of
the view. No application changes are required because the code
is in the trigger which resides in the database.

Only one INSTEAD OF trigger is allowed for each type of
operation on a given subject view.

If you want to read more about INSTEAD OF triggers, check out
this extensive article (albeit for DB2 LUW) available on the IBM
Developer Works web site:

http://www.ibm.com/developerworks/db2/library/techarticle/0210riel
au/0210rielau.html

33

Native SQL Procedure Language Improvements

Native SQL stored procedures contain only SQL procedure language (PL)
statements.

In V8:

Native SQL stored procedures are converted to C, which must be compiled

(and obviously, requires a C compiler), and stored in the DB2 Catalog.

In DB2 9:

Native SQL stored procedures are converted to a native representation

before they are stored in the DB2 catalog. Native SQL stored procedures do

not run under WLM, but in the DBM1 address space. This improves

performance.

Native SQL stored procedures that are run through DDF are eligible to run on

zIIP processors.

Stored procedures can be versioned, making it easer to develop & test them.

Nested compound SQL statements.

You have to
drop and re-
create native
stored
procedures
after moving to
DB2 9 to take
advantage of
these changes.

DB2 9 for z/OS Stored Procedures: Through the CALL and Beyond (SG24-7604)

34

Reoptimization

You can gain additional optimization for dynamic SQL using

the REOPT parameter of the BIND command.

REOPT specifies whether to have DB2 determine an access

path at run time by using the values of host variables,

parameter markers, and special registers.

As of DB2 9, there are four options from which to choose

when specifying REOPT.

35

REOPT Enhancements

REOPT (NONE) –PREPARE determines the access path and no reoptimization is
performed. The bound statement can be moved to the dynamic statement cache
(DSC), if the cache is being used.

REOPT (ONCE) – PREPARE determines an initial access path before the host variable
values are available. When the statement is first executed and the host variable
values are known, the statement is reoptimized one time. The hope is that the one-
time reoptimization will provide a better access path than the initial PREPARE. The
statement can be placed in the dynamic statement cache and reused multiple times.

REOPT (ALWAYS) – The SQL statement is re-optimized each time it is executed,
always using the latest host variable values.

REOPT (AUTO) – Leave it up to DB2 (autonomic?). If changes in the filter factors for
the statement predicates warrant, DB2 can re-prepare the statement. The newly
prepared statement would be executed and would replace the prepared statement
currently in the Global Dynamic Statement cache.

NOREOPT(VARS)
can be specified
as a synonym of
REOPT(NONE).

REOPT(VARS) can
be specified as a
synonym of
REOPT(ALWAYS).

DB2 V8

DB2 9

36

REOPT Applicability: Dynamic vs. Static SQL

NOYESAUTO

NOYESONCE

YESYESALWAYS

YESYESNONE

Static SQLDynamic SQLREOPT Parameter

Consider binding
static programs
with
REOPT(ALWAYS)
when the values
for your
program’s host
variables or
special registers
are volatile and
make a
significant
difference for
access paths.

ONCE and AUTO are not
valid for static SQL because
they work with the dynamic
statement cache, which does
not apply to static SQL.

37

PLANMGMT: Plan Stability

Plan stability, which works on packages only,

allows you to keep backups versions of your

program’s access paths.

Why? Because sometimes, after rebinding your

program, performance degrades. With plan

stability you can fall back to a previous package.

38

PLANMGMT BIND Options

PLANMGMT(OFF) - No change to existing behavior. A

package continues to have one active copy.

PLANMGMT(BASIC) - A package has one active copy. One

additional prior copy (PREVIOUS) is preserved.

PLANMGMT(EXTENDED) - A package has one active copy,

and two additional prior copies (PREVIOUS and ORIGINAL)

are preserved.

Previous
and active
copies of
package.

Original,
previous
and active
copies of
package.

39

The Ol’ Switcheroo

SWITCH (PREVIOUS) - changes the current and previous
packages:

The existing current package takes the place of the previous
package.

The existing previous package takes the place of the current
package.

SWITCH (ORIGINAL) - clones the original copy to take the
place of the current copy:

The existing current copy replaces the previous copy.

The existing previous copy is discarded.

Only if you
bound using
PLANMGMT
EXTENDED
(refer to
previous
slide).

Caution: PLANMGMT doubles (or triples) storage requirements
for package skeletons in SPT02

40

LOB Improvements #1

LOB File Reference Variable

A host variable defined in a host language to contain the file
name that directs file input and output for a large object (LOB).

Using file reference variables, large LOB values can be inserted
from a file or selected into a file rather than a host variable.

This means that your application program does not need to
acquire storage to contain the LOB value.

File reference variables also enable you to move LOB values from
the DBMS to a client application or from a client application to a
database server without going through the working storage of the
client application.

41

LOB Improvements #2 – FETCH CONTINUE

Prior to Version 9, there were two methods you

could deploy in your programs to fetch LOB data:

Fetching data into a pre-allocated buffer
— can cause virtual storage constraint problems,

especially for larger LOBs)

Using a LOB locator to retrieve a handle on the data.
— using LOB locators that commit infrequently or do not

explicitly free the locators can use considerable
amounts of DB2 resources

42

LOB Improvements #2 – FETCH CONTINUE

DB2 9: FETCH CONTINUE

Can retrieve LOB columns in multiple pieces without
using a LOB locator.

Can continue a FETCH operation to retrieve the
remaining LOB data when truncation occurs.

You will have to manage the buffers and reassemble
the pieces of data in your application program.

43

FETCH FIRST and ORDER BY in Subselect

First, some basic education… The SELECT statement is broken down into three sections:

The select-statement is the form of a query that can be directly specified in a
DECLARE CURSOR statement, or prepared and then referenced in a DECLARE CURSOR
statement. It is the thing most people think of when they think of SELECT in all its
glory. If so desired, it can be issued interactively using SPUFI. The select-statement
consists of a fullselect, and any of the following optional clauses: order-by, fetch-first,
update, read-only, optimize-for, isolation and queryno.

A fullselect can be part of a select-statement, a CREATE VIEW statement, or an INSERT
statement. This sometimes confuses folks as they try to put a FETCH FIRST n ROWS
clause or an ORDER BY in a view or as part of an INSERT. A fullselect does not allow
any of the following clauses: ORDER BY, FOR READ ONLY, FOR FETCH ONLY, FOR
UPDATE OF, OPTIMIZE FOR, WITH, QUERYNO, and FETCH FIRST. A fullselect specifies a
result table – and none of these afore-mentioned clauses apply.

Finally, a subselect is a component of the fullselect. A subselect specifies a result
table derived from the result of its first FROM clause. The derivation can be described
as a sequence of operations in which the result of each operation is input for the next.

select-statement

fullselect

subselect

44

Think of it this way…

In a subselect you specify the FROM to get the tables, the WHERE
to get the conditions, GROUP BY to get aggregation, HAVING to
get the conditions on the aggregated data, and the SELECT clause
to get the actual columns.

In a fullselect you add in the UNION (EXCEPT and INTERSECT) to
combine subselects and other fullselects.

Finally, you add on any optional order-by, fetch-first, update,
read-only, optimize-for, isolation and queryno clauses to get the
select-statement.

Well, until DB2 9 that is…

45

The Pre-9 Problem

In DB2 V8, the ORDER BY and FETCH FIRST n ROWS ONLY clauses are only allowed at
the statement level as part of select-statement or a SELECT INTO statement. That
is, you can specify the clauses as part of select-statement and write:

SELECT * FROM T ORDER BY c1 FETCH FIRST 1 ROW ONLY

But you cannot specify the clauses within the fullselect and write:

INSERT INTO T1

(SELECT * FROM T2 ORDER BY c1 FETCH FIRST 1 ROW ONLY)

Why is this a problem?

Assume a large table

You only want the first 1000 rows sorted in a particular order

Coding a SELECT using FETCH FIRST and ORDER BY clauses does the trick,
but the sort is done before the fetch (runs a large sort for no reason).

As a work around you could code use a temp table, but that requires a lot
more work.

46

The DB2 9 Solution

Allow FETCH FIRST and ORDER BY in a subselect, for example:

SELECT T1.EMPNO, T1.PROJNO

FROM DSN8910.EMPPROJACT T1

WHERE T1.EMPNO IN

(SELECT T2.EMPNO

FROM DSN8910.EMP T2

ORDER BY SALARY DESC

FETCH FIRST 3 ROWS ONLY)
ORDER BY T1.PROJNO;

The subselect MUST be enclosed in parentheses and the ORDER BY or
FETCH FIRST cannot be:

in the outermost fullselect of a view

in a materialized query table

Enclosed in
parentheses.

Enclosed in
parentheses.

47

Index on Expressions

DB2 9 extends the CREATE INDEX statement to

index expressions instead of just columns.

What is an expression? It can be as simple as a

column reference, or it can be a built-in function

invocation or even a more general expression,

with certain restrictions.

48

Index on Expressions - Restrictions

Each expression must contain as least one reference to a column of the
table named in the ON clause of the index.

Referenced columns cannot be LOB, XML, or DECFLOAT data types nor
can they be a distinct type that is based on one of those data types.

Referenced columns cannot include any FIELDPROCs nor can they include
a SECURITY LABEL.

And the expression cannot include any of the following:

Subquery Aggregate function

Non-deterministic function Function that has an external action

User-defined function Sequence reference

Host variable Parameter marker

Special register CASE expression

OLAP specification

49

Index on Expressions - Examples

CREATE INDEX XUPLN

ON EMP

(UPPER(LAST_NAME))

USING STOGROUP DSN8G910

PRIQTY 360 SECQTY 36

ERASE NO COPY YES;

CREATE INDEX XTOTCOMP

ON EMP (SALARY + COMM + BONUS) . . .

CREATE UNIQUE INDEX XLNFN

ON EMP (SUBSTR(FIRSTNAME,1,1) CONCAT '. ' CONCAT LASTNAME) . . .

50

New Built-in Functions – Char/String Functions

ASCII_CHR - returns the character that has the ASCII code value that is

specified by the argument.

ASCII_STR - returns a string, in the system ASCII CCSID that is an ASCII

version of the string.

EBCDIC_CHR / EBCDIC_STR - I bet you can guess what they do.

UNICODE - returns the Unicode UTF-16 code value of the leftmost

character of the argument as an integer.

UNICODE_STR - returns a string in Unicode UTF-8 or UTF-16 (depending

on the specified parameter) representing a Unicode encoding of the input

string.

51

New Built-in Functions – String manipulation

LPAD - returns a string that is padded on the left, with blanks (or a specific
character). The LPAD function treats leading or trailing blanks as significant.

RPAD - does the same but on the right. So, in the following example the last name is
left padded with periods, then right padded with blanks.

SELECT LPAD(LASTNAME, 30, ’.’) AS LAST,

RPAD(FIRSTNME, 30) AS FIRST

FROM DSN910.EMP;

OVERLAY - returns a string with portions of it overlaid by a specified value. You
provide the string, a substring to be overlaid, and its starting point and length, and
DB2 does the rest. For example:

SELECT CHAR(OVERLAY('PLATELET','CEMEN',4,4,OCTETS),9),

CHAR(OVERLAY('INSERTING','IS',4,2,OCTETS),10),

FROM SYSIBM.SYSDUMMY1; Returns:
PLACEMENT

Returns:
INSISTING

52

New Built-in Functions – “Similar Sounding”

SOUNDEX - returns a 4 character code that represents the sound of the words in the
argument. The result can be used to compare with the sound of other strings. The
data type of the result is CHAR(4). For example, this query would return not only
employees with a last name of “Smith,” but also anything that sounds like Smith, such
as Smythe:

SELECT LASTNAME

FROM DSN910.EMP

WHERE SOUNDEX(LASTNAME) = SOUNDEX(’Smith’);

DIFFERENCE - returns a value from 0 to 4 where the number represents the difference
between the sounds of two strings based on applying the SOUNDEX function to the
strings. The higher the value, the closer the two strings are to sounding alike. Consider
this example which returns the values 4, C523, and C523:

SELECT DIFFERENCE(’CONSTRAINT’, ’CONSTANT’),

SOUNDEX(’CONSTRAINT’),

SOUNDEX(’CONSTANT’)

FROM SYSIBM.SYSDUMMY1;

Since the two
strings return
the same
SOUNDEX
value, the
difference is 4
(the highest
value
possible).

53

New Built-in Functions – Date/Time

EXTRACT - returns a portion of a date or timestamp. You can use EXTRACT to slice
up a date/time value into its component pieces. For example:

SELECT BIRTHDATE,

EXTRACT (DAY FROM BIRTHDATE) AS DAY,

EXTRACT (MONTH FROM BIRTHDATE) AS MONTH,

EXTRACT (YEAR FROM BIRTHDATE) AS YEAR

FROM DSN8910.EMP;

MONTHS_BETWEEN - returns an estimate of the number of months between two
expressions. The result is calculated based on a 31 day month. For example, the
result of this query would be 1.096774193548387:

SELECT MONTHS_BETWEEN ('2007-02-20','2007-01-17')

AS MONTHS_BETWEEN

FROM SYSIBM.SYSDUMMY1;

54

New Built-in Functions - Timestamp

TIMESTAMPADD - adds an interval to a timestamp.

TIMESTAMPDIFF - subtracts two timestamps and returns an

interval.

TIMESTAMP_FORMAT – changes the display format for a

timestamp value. Valid formats that can be specified are:

‘YYYY-MM-DD’

‘YYYY-MM-DD-HH24-MI-SS’

‘YYYY-MM-DD-HH24-MI-SS-NNNNNN’

55

Other New Built-in Functions

RID - returns the RID of a row

CORRELATION - returns the coefficient of correlation of a

set of number pairs

COVARIANCE / COVARIANCE_SAMP - return the (population)

covariance of a set of number pairs

And, of course, we also get scalar functions to support the

new data types in DB2 9 (the new data types are discussed

later in this presentation).

56

OLAP Functions: RANK

SELECT EMPNO, LASTNAME, FIRSTNAME,

SALARY+BONUS+COMM AS TOTAL_COMP,

RANK()
OVER(ORDER BY SALARY+BONUS+COMM DESC)

AS RANK_COMP

FROM EMP

WHERE SALARY+BONUS+COMM > 30000

ORDER BY LASTNAME;

This query will rank employees who have total compensation greater than

$30,000, but order the results by last name. This allows you to rank data

differently than the order in which it is presented.

57

OLAP Functions: RANK

OK, what did that query do?

5000200040000RACHELGREEN500

0010000BUDWISER400

0300000700000BRANDYABBOTT300

01000025000DONNASHAW200

400000100000500000CRAIGMULLINS100

COMMBONUSSALARYFIRSTNAMELASTNAMEEMPNO

300 ABBOTT BRANDY 1000000 1

500 GREEN RACHEL 47000 3

100 MULLINS CRAIG 1000000 1

200 SHAW DONNA 35000 4

400 WISER BUD 10000 5

RANK of the
total
compensation

58

OLAP Functions: DENSE_RANK

Both ABBOTT and MULLINS earn the most, but the amount is the same, so
they share the number one ranking. With a dense rank, the next rank value
is 2, and not 3.

5000200040000RACHELGREEN500

0010000BUDWISER400

0300000700000BRANDYABBOTT300

01000025000DONNASHAW200

400000100000500000CRAIGMULLINS100

COMMBONUSSALARYFIRSTNAMELASTNAMEEMPNO

300 ABBOTT BRANDY 1000000 1

500 GREEN RACHEL 47000 2

100 MULLINS CRAIG 1000000 1

200 SHAW DONNA 35000 3

400 WISER BUD 10000 4

When there are
two at the top,
next is 2 not 3
w/DENSE_RANK.

59

OLAP Functions – ROW_NUMBER

SELECT ROW_NUMBER() OVER(ORDER BY WORKDEPT,
LASTNAME) AS NUMBER, LASTNAME, SALARY

FROM EMP

ORDER BY WORKDEPT, LASTNAME;

ROW_NUMBER - specifies that a sequential row
number is computed for the row that is defined by
the ordering, starting with 1 for the first row.

60

Skipping Locked Data

In DB2 9 it is possible to set up your SQL to skip over pages or
rows that are locked.

The program will only “see” unlocked, committed data.

Why would you want to do this? Perhaps to improve application
performance and availability. If you don’t have to wait for locks
to be released then “things” should run faster, right?

But it comes at the cost of not accessing the locked data at all.
Yes, this means your results will be inconsistent. You should only
utilize this clause when your program can tolerate skipping over
some data and NEVER when results must be 100% accurate, like
when balancing financial data, for example.

This is not
the same as
dirty reads
(UR), which
can “see”
uncommitted
locked data.

61

OK, How Do You Skip Locked Data?

SKIP LOCKED DATA – can be specified on:

SELECT

PREPARE

searched UPDATE and DELETE

UNLOAD utility

Can only be used with the following isolation levels:

Cursor Stability (CS)

Read Stability (RS)

If any other isolation level is in use for the plan or
package, the SKIP LOCKED DATA option is ignored.

62

For Example

5000040000RACHELGREEN500

0200010000BUDWISER400

0300000700000RANDYABBOTT300

0025000DONNASHAW200

400000100000500000CRAIGMULLINS100

COMMBONUSSALARYFIRSTNAMELASTNAMEEMPNO

SELECT COUNT (*)
FROM EMP
WHERE COMM = 0
SKIP LOCKED DATA;

SELECT COUNT (*)
FROM EMP
SKIP LOCKED DATA;

UPDATE EMP
SET COMM = 500
WHERE BONUS = 0;

Assume row
level
locking and
no COMMIT.

63

Optimistic Locking

What is optimistic locking?

We are optimists and think that usually we will be
the only ones with interest in the data.

In other words, when optimistic locking is
implemented you are assuming that most of the time
there will be no other programs that are interested
in the page of data that you are planning to modify.

Optimistic locking decreases the duration of locks
and can improve performance and availability,
helping to eliminate -911 and -913 locking issues.

64

Optimistic Locking and ROW CHANGE TIMESTAMP

For programs that use updateable static scrollable cursors, DB2 can use
optimistic locking as long as the plan/package is bound ISOLATION(CS).

If you have this situation, DB2 will deploy optimistic locking to reduce the
duration of locks between consecutive FETCH operations and between
fetch operations and subsequent positioned UPDATE or DELETE operations.

FETCH row 1
LOCK row 1

FETCH row 2
UNLOCK row 1
LOCK row 2

UPDATE row 2

FETCH row 1
LOCK row 1
UNLOCK row 1

FETCH row 2
LOCK row 2
UNLOCK row 2

UPDATE row 2
LOCK row 2
re-evaluate and compare
UPDATE

Regular Locking Optimistic Locking

65

ROW CHANGE TIMESTAMP

The ROW CHANGE TIMESTAMP can be used to find

out when table rows were modified. For example:
CREATE TABLE CUSTOMER

(CUSTNO CHAR(8) NOT NULL,

CUST_INFOCHANGE NOT NULL GENERATED ALWAYS

FOR EACH ROW ON UPDATE

AS ROW CHANGE TIMESTAMP,

CUST_NAME VARCHAR(50),

CUST_ADDRESS VARCHAR(100),

CUST_CITY CHAR(20),

CUST_STATE CHAR(2),

CUST_ZIP CHAR(9),

CUST_PHONE CHAR(10),

PRIMARY KEY (CUSTNO))

Now that the table is
defined with the
ROW CHANGE
TIMESTAMP we can
use it in our
programs and
queries to
determine when the
row was last
changed.

66

Using the ROW CHANGE TIMESTAMP

To find all of the customer rows that were

changed in the past week (ie. the last 7 days) we

could run the following query:

SELECT CUSTNO, CUST_NAME

FROM CUSTOMER

WHERE ROW CHANGE TIMESTAMP FOR CUSTOMER <=

CURRENT TIMESTAMP

AND ROW CHANGE TIMESTAMP FOR CUSTOMER >=

CURRENT TIMESTAMP - 7 DAYS;

67

ALTER and ROW CHANGE TIMESTAMP

But what would happen if you issued a statement like on
the previous slide, but against a table that was altered to
include a ROW CHANGE TIMESTAMP, not created initially
with one?

DB2 will use the time the page was last modified until your
REORG. So the results will not be exactly correct because
it would return all the rows on each page that qualifies
(because at least one row on the page changed).

Clean up the advisory REORG pending as
soon as possible after adding the ROW
CHANGE TIMESTAMP.

68

New Data Type: BIGINT

BIGINT is an exact numeric data type capable of

representing 63-bit integers. This is the third integer data

type now available to DB2 and it offers the ability to store

the largest range of values:

SMALLINT values can range from -32768 to 32767

INTEGER values can range from -2147483648 to
2147483647

BIGINT values can range from -9223372036854775808
to 9223372036854775807

69

New Data Types: Binary Data

BINARY and VARBINARY data types extend current support

of binary strings and are compatible with BLOB data type.

They are not compatible with character string data types.

It is somewhat easy to migrate existing columns defined as

CHAR FOR BIT DATA or VARCHAR FOR BIT DATA over to

BINARY or VARBINARY. If there is an index defined on the

column, the index is placed in RBDP.

You cannot alter BINARY or VARBINARY data types to
CHAR FOR BIT DATA or VARCHAR FOR BIT DATA.

70

New Data Type: DECFLOAT

DECFLOAT takes advantage of new System z9 hardware support delivering a
data type that lets you use decimal floating-point numbers with greater
precision than the existing FLOAT data type. The maximum precision is 34
digits and the range of a decimal floating point number is either 16 or 34
digits of precision. The range of values supported by DECFLOAT is:

DECFLOAT(16) range: -9.999999999999999×10384 to 9.999999999999999×10384

Smallest positive DECFLOAT(16): 1.000000000000000×10-383

Largest negative DECFLOAT(16): -1.000000000000000×10-383

DECFLOAT(34) range: -9.999999999999999999999999999999999×106144 thru

9.999999999999999999999999999999999×106144

Smallest positive DECFLOAT(34):

1.000000000000000000000000000000000×10-6143

Largest negative DECFLOAT(34):

-1.000000000000000000000000000000000×10-6143

71

Additional DECFLOAT Considerations

The DECFLOAT data type is able to represent the following

named special values representing “non-number numbers”:

Infinity - a value that represents a number whose
magnitude is infinitely large.

Quiet NaN - a value that represents undefined results which
does not cause an invalid number condition. NaN is not a
number.

Signaling NaN - a value that represents undefined results
which will cause an invalid number condition if used in any
numerical operation.

DECFLOAT is only supported in Java, Assembler, and REXX.

72

pureXML

And finally, we get pureXML support to store XML
as a native data type in DB2.

That means you can specify XML as a data type for
columns in your DB2 tables in DB2 9 for z/OS.

73

Before we go…

Plans and packages that were bound before DB2

V4 will be automatically rebound when first

accessed by DB2 9, so:

It is a good idea to rebind these yourself, ahead of
time, before you try to run them in DB2 9.

That way, you can see what the impact of the new
version is on your access paths.

74

Summary

DB2 9 for z/OS offers a wealth of new things and

stuff for DB2 application developers.

Make sure you take the time to learn how these new
features can help you build better DB2 applications!

…then maybe the work won’t
keep piling up like this!

75

Craig S. Mullins

NEON Enterprise Software

craig.mullins@neonesoft.com

www.neonesoft.com

www.craigsmullins.com

www.DB2portal.com

